

2010 Marking Scheme

Grade	Mark Required		« condidator achieving anada
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
A	85+	68%	27.6%
В	72+	58%	26.7%
С	60+	48%	22.3%
D	54+	43%	7.5%
No award	<54	< 43%	15.9%

Section:	Multiple Cha	pice	Extended A	Answer	Investig	pation
Average Mark:	27.2	/40	30.5	/60	15.3	/25

20)10 <i>A</i>	٩dv	Higher	Chemist	ry Ma	arkin	g Scheme	
MC Qu	Answer	% Pupils Correct	Reasoning					
1	D	86 61	 A 4s fills before 3d and 3d fills singly before filling doubly B 4s fills before 3d fills C 4s fills doubly before 3d fills D 4s fills doubly before 3d fills singly then doubly 1s² 2s² 2p⁶ 3s² 3p¹ is a group 3 element (Al) and forms a 3+ ion (Al³⁺) to achieve an 					
<u> </u>		01	electron arrangen	nent of 1s ² 2s ² 2p ⁶			0	
3	D	89	\blacksquare As fills before 3d1s2s2p3s \blacksquare B 4s fills before 3d3s3p3d3d \blacksquare C 4s fills before 3d5s5p5d5f \blacksquare D 3p then 4s then 3d then 4p8e				2 3 3p 3d 5 4p 4d 4f 3 5p 5d 5f 6p 6d	
4	В	77	Ionisation Energy Equation Value Group 2 elements removing the 3 rd e	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
5	В	32	⊠A Each element ☑B Energy is req ☑C Emission lines ☑D The higher tl	 A Each element will give a characteristic spectrum with different coloured lines B Energy is required to promote electrons, not just visible light C Emission lines come from electron transitions from upper levels to lower levels D The higher the intensity of the line, the higher the quantity of the element 				
6	D	53	No. of electron	No. of electron pairs = $\frac{10. \text{ of outer electrons in central atom + no. of bonds - charge}}{2}$ $= \frac{7+4-(-1)}{2} = \frac{12}{2} = 6 \text{ electron pairs (4 bonding + 2 lone pair)}$				
			Substance	Positive Ion Radi	ii Negative	Ion Radii	Ratio	
			Cs^+Cl^-	$Cs^+ = 174 \text{pm}$	$Cl^{-} = 1$	81 pm	$\frac{CS}{Cl^{-}} = \frac{174}{181} = 0.961$ $\frac{Ba^{2+}}{135} = \frac{135}{0.964}$	
7	A	78	Fe ²⁺ O ²⁻	Fe ²⁺ = 61 pr	$n = O^{2-} = 1$	136pm	$\frac{O^{2^{-}}}{O^{2^{-}}} = \frac{61}{140} = 0.435$	
			Ag⁺I⁻	Ag⁺ = 126 pn	n I ⁻ = 2	20pm	$\frac{Ag^{+}}{I^{-}} = \frac{115}{220} = 0.523$	
			Ni ²⁺ O ²⁻	Ni ²⁺ = 69 pm	n 0 ²⁻ = 2	136pm	$\frac{Ni^{2+}}{O^{2-}} = \frac{69}{140} = 0.493$	
8	В	75	 ☑ A ionic hydride ☑ B ionic hydride: ☑ C ionic hydride: ☑ D ionic hydride 	s produce alkaline s s produce hydroger s produce alkaline s s produce hydroger	solutions whe n gas and alka solutions wher n gas when ad	n added to line solutio n added to lded to wat	water ns when added to water water er	

9	D	67	A Elemen B Metallia C Elemen Oxides and ele	 A Elements cannot have ionic bonding B Metallic oxides will be solids at room temperature as they are ionic C Elements are not polar covalent as there is no electronegativity difference O Oxides which are gases at room temperature must be covalent (element is non-metal) and elements must non-polar covalent as there is no electronegativity difference 					
10	С	56	▼A SO2 or ▼B CO2 on ▼C Na2O f ▼D Al2O3 i	nly partiall ly partially fully disso s insoluble	y dissociates when o y dissociates when o ciates ∴ many ions o e in water ∴ no ions	dissolve lissolved and high dissolve	d ∴ few ions an d ∴ few ions an er conductivity ed and no condu	d lower co d lower cor ctivity	nductivity nductivity
11	С	75	■A Forwar ■B Forwar ■C The fo ■D Forwar	rd reaction rd reaction rward rea rd reaction	n decreases temp n increases pressure ction is favoured by n increases pressure	high tei e ∴ low high te e ∴ low	mp favours forv pressure favour mperature and pressure favou	vard reacti rs forward low pressu rs forward	ion reaction re reaction
12	A	85	Quantity Effect of adding more iodine		[I2]water More iodine dissolves in water giving increase in concentration of iodine in water	LI More cyclohe in conce	2]cyclohexane i odine dissolves in exane giving increase entration of iodine in cyclohexane	Partition Coefficient Partition coefficient remains constant as the proportion of iodine in each layer remains the same.	
13	В	89		Bronstee	d-Lowry Definition	Acid Base	Donates a pr (forms the conju Accepts a pr (forms the conju	roton/H ⁺ gate base) roton/H ⁺ gate acid)	
14	A	70	Titration • Me	Titration of strong acid and weak alkali gives salt with pH below 7 Methyl orange changes colour in the pH range 4.2-6.3 					
15	D	49	⊠A Reacto ⊠B Reacta ⊠C Naturo ☑D Forma	 A Reactants are ions and not elements in their natural state B Reactants are ions and not elements in their natural state C Natural state of Bromine Br2 is a liquid not a gas E Formation of 1 mole of a substance from elements in their natural state 					
		A 56	Entha	lpy	Definition		Equ	ation	
16	Α		Combus	CombustionBurning 1 mole of a substance completelyH2(g) + ½O2(g) → H2O(1mol					1 2 Ο (ι)
			Format	tion For	rmation of 1 mole of a subst m elements in their natural :	ance State	$H_{2(g)} + \frac{1}{2}O_{2(g)}$) ──►	12 0 (l) 1mol
17	D	60	■A Bond e ■B Enthal ■C The en ☑D The er	 ☑ A Bond enthalpies cannot be directly measured by experiment ☑ B Enthalpy of formations are measured using other enthalpies and Hess's Law ☑ C The enthalpy for turning gaseous ions into a solid cannot be directly measured ☑ D The enthalpy change for dissolving 1 mol of KCl an me measured using △H=cm△T 					
18	В	74	 ☑A Step involves: Breaking 2x O-H bonds and forming 1x H-H bond ☑B Step involves: Breaking 2x O-H bonds ∴ 2X represents breaking 2x O-H bond ☑C Step involves: Breaking 2x O-H bonds and forming 1x H-H bond ☑D Step involves: Breaking 2x O-H bonds but X represents breaking 1x O-H bond 						
19	С	76	Image: A constraint of the second structure $Li(s) + \frac{1}{2}Br_2(l)$ $LiBr(s)$ Image: A constraint of the second structure $Li(s) + \frac{1}{2}Br_2(l)$ $LiBr(s)$ Image: A constraint of the second structure $Li^*(aq) + Br^*(aq)$ $Li^*(aq) + Br^*(aq)$ Image: A constraint of the second structure $Li^*(aq) + Br^*(aq)$ $Br^*(aq)$ Image: A constraint of the second structure $Li^*(q) + Br^*(aq)$ $Br^*(aq)$ Image: A constraint of the second structure $Li^*(q) + Br^*(aq)$ $Br^*(aq)$ Image: A constraint of the second structure $Li^*(q) + Br^*(aq)$ $Br^*(aq)$ Image: A constraint of the second structure $Li^*(q) + Br^*(aq)$ $Br^*(aq)$						
20	D	58	E A ΔH_2 is enthalpy of atomisation of potassium = +88kJ mol ⁻¹ E A ΔH_2 is breaking $\frac{1}{2}$ mole of Cl-Cl bonds = $\frac{1}{2}$ x243kJ mol ⁻¹ = +121.5kJ mol ⁻¹ E C ΔH_4 is enthalpy of electron affinity of chlorine = -349kJ mol ⁻¹ E C ΔH_4 is enthalpy of 1 st ionisation of potassium = +419kJ mol ⁻¹						
21	D	76	$\blacksquare A \Delta H_3$ is $\blacksquare B \Delta H_4$ is $\blacksquare C \Delta H_5$ is $\blacksquare D \Delta H_6$ is	breaking enthalpy c enthalpy c enthalpy c	¹ / ₂ mole of Cl-Cl bonds of electron affinity of 1 st ionisation of po of lattice formation	s and is of chlor otassiun and is c	always endothe ine and usually 1 and is always a 1 ways very exo	rmic exothermi endotherm thermic	c ic

			$\mathbf{E} \mathbf{A} \Delta \mathbf{G}^\circ$ must be no	egative for a re	action to	be feasible	
22	С	79	$\square \square $	egative for a re coative and E° m	action to Just be p	obe feasible ositive for a re	action to be feasible
			⊠D E° must be pos	itive for a reac	tion to b	e feasible	
			A Ni(s) is oxidise	d: Ni(s)	Ni ²⁺ (aq) +	2e ⁻	
23	С	83	\mathbb{Z} B N ²⁺ (aq) is a pro	duct in this rea	ction	Cura	
	•		E C Cu (aq) is reduce	ict in this react	ion	Cu(s)	
			0	Fe ³⁺ + e ⁻	\rightarrow	Fe ²⁺	E° = +0.77V
			0	$I_2 + 2e^{-1}$	\rightarrow	2I-	E° = +0.54V
						2- 2 +	50 0 771/
24	Α	33	0 x2	2Fe ³⁺ + 2e ⁻	\rightarrow	2Fe ²⁺	E ^o = +0.77V
			❷ ×-1	21 ⁻	\rightarrow	I ₂ + 2e ⁻	E° = -0.54V
			Add	0C 3+ 0T		05 ² + T	5. 0.001/
			① '+ ② '	2re ³⁺ + 21 ⁻	\rightarrow	2re ²⁺ + 1 ₂	E° = +0.23V
			🗷 A Elimination red	actions have a m	olecule 1	removed leaving	behind a C=C double bor
25	С	77	凹B Addition react	ions involve add	ling acro	ss a C=C double s into the positi	bond
	•		D Electrophilic s	ubstitution rea	ctions us	ually take place	on of the chiotine atom
			🗷 A The propagatio	on step is part o	of a chair	n reaction: CH ₃	• + Cl ₂ CH ₃ Cl + Cl•
26	D	75	B The initiation s	step is homolyti	c fission	: Cl ₂ Cl•	° + C ° Cl ► Cla _ Cla
	U	/ 5	MD There are no (ormation is toui	10 in The Is for an	addition reaction	$Cl_2 \longrightarrow Cl^2 + Cl^2$
			EA Ketones have l	ow solubility du	e to lack	of a -OH bond	
27	C	75	🗷 B Aldehydes hav	e low solubility	due to la	ick of a -OH bo	nd
67	C	15	✓C Shorter carbo	xylic acids have	higher s	solubility than lo whility then abo	onger ones
			EA hybridisation i	s when s and p	orbitals	become equal in	i energy
28	D	97	⊠B pi bond has sid	e on overlap of	parallel	orbitals lying pe	erpendicular to sigma bor
20	D	0/	EC sigma bond is t	he end on over	ap of or	bitals along the	axis of the bond
			IND A double bond	is a combinatio	n of a sig	gma bond and a	pi bond
			H H				
			H−Ç-	-н			
				-4	/		
					Í		\wedge
~~		- 4		<u>н</u>			
29	A	51	н "С		/	rotate	T
			н∽`С ‴				
			ц \	/ ['] H \		/	
			$\frac{1}{2}$	ć. /			{
			$H-C - \tilde{J}$	ТН			۱.
			нн	н			
			EA Alkane with 15	carbons = C15H	32 but 1	cyclo- ring mak	es formula C15H30
30	B	49	∐B Alkane with 15	carbons = $C_{15}H$	32 but 2	cyclo- rings mal	Kes tormula C15H28
			ED 4 hydrogen ato	oms added to m	olecule a	cross 2x C=C do	ouble bonds

			A Br ₂ is not attracted to sites of positive charge
31		55	E CH ₃ I is more likely to react with a nucleophile in a substitution reaction
51	U	55	$\mathbb{E}C$ NH4 ⁺ is more likely to be an electrophiles as it has a positive charge
			□ DNH ₃ has lone pair of electrons and is attracted to centres of positive charge
			▲ A CH ₃ I has no O-H, N-H or H-F bonds
32	R	83	B Methanol CH ₃ OH has an O-H bond and has hydrogen bonding between molecules
02	U	00	ISC CH3OCH3 has no O-H, N-H or H-F bonds
			LED CH ₃ CH ₂ CHO has no O-H, N-H or H-F bonds
			MA no -OH group or -COOH group to react with sodium metal
33	Δ	58	B bromine solution will react with C=C double bond
00	F A	50	Lithium Aluminium Hydride will reduce the -CHO aldehyde group
			■D Acidified Dichromate Solution will oxidise the -CHO aldehyde group
24	D	10	Step 1: $NH_3(g) + H_2O(l)$ \longrightarrow $NH_4^+(aq) + OH^-(aq)$
34	В	48	Step 2: $NH_4^+(aq) + OH^-(aq) + CH_3COOH(l) \longrightarrow CH_3COO^-NH_4^+(aq) + H_2O(l)$
			🗷 A Molecule adding to (CH3)2NH must have 4 carbons to make eramine with 6 carbons
25		70	B Molecule adding to (CH3)2NH must have 4 carbons to make eramine with 6 carbons
30	D		E C C=C is between C_2 and $C_3 \therefore C=O$ must be in middle of 4 carbons not on end.
			\square D C=C is between C ₂ and C ₃ \therefore C=O must be in middle of 4 carbons not on end.
			$\square A H_2SO_4/HNO_3$ reacts with benzene to substitute on a nitro -NO ₂ group
26	٨	60	B H2SO4/HNO3 reacts with benzene to substitute on a nitro -NO2 not SO2H group
30	A	09	🗷 C Benzene usually reacts by electrophilic substitution
			ED Benzene usually reacts by electrophilic substitution
			🗷 A Benzene is a flat planar molecule
37	C	61	\blacksquare B Benzene has the formula C ₆ H ₆ which simplifies to CH
57		04	☑C Benzene lacks C=C double bonds and will not decolourise bromine solution
			D The bond lengths between carbons in benzene is equal
			■ A C ₃ H ₆ has two isomeric forms: cyclopropane and propene
38	D	75	$\square B C_3H_8$ is propane and only has one structure.
50	D	15	E C C ₃ H ₇ Br has two isomeric forms: 1-bromopropane and 2-bromopropane
			D C2H4Cl2 has two isomeric forms: 1,1-dichloroethane and 1,2-dichloroethane
			$\square A$ The positively charged ions are deflected in a magnetic field to separate them
30	Δ	Δ2	B The vacuum pump is designed to allow the flow are particles to be separated
57	A	ΤL	EC The ionisation chamber is to put a positive charge onto the particle to allow separation
			LEID Electron Bombardment is the mechanism of charging the particles
			IR adsorption at 2725cm ⁻¹ corresponds to C=O bond within an aldehyde -CHO group
	~	00	I≚IA Propanone does not have an aldehyde -CHO group
40	C	88	I≚IB CH2=CHCH2OH does not have an aldehyde -CHO group
	-		∐C Propanal does have an aldehyde -CHO group
			IND CH2=CH-O-CH3 does not have an aldehyde -CHO group

201	2010 Adv Higher Chemistry Marking Scheme					
Long Qu	Answer	Reasoning				
1a	748kJ mol ⁻¹	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{mol}^{-1} \times 6.63 \times 10^{-34} \text{ J } \text{s} \times 3 \times 10^8 \text{ m } \text{s}^{-1}}{160 \times 10^{-9} \text{ m}}$ $= 748361 \text{ J mol}^{-1}$ $= 748 \text{ kJ mol}^{-1}$				
1b(i)	5	No. of electron = $\frac{10}{2}$ = $\frac{10}{2}$ = 5 electron pairs (2 bonding + 3 lone pair)				
1b(ii)	Trigonal bipyramidal	H C Ar F				
2a	+3	Charge on Cr = charge on _ charge on _ charge on complex (H2O)4 (Cl ⁻)2 = 1 - 0 - (-2) = 3				
2b	Answer: Tetraaquadichlorochromium(III)	Tetraaqua dichlorido chromium (III) 4×H20 2×Cl ⁻ metal +ve complex complex charge				
2c	One from:	$\begin{pmatrix} C_{1} \\ H_{2}O \\ H_{2}O \\ C_{1} \\ C_{1} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{1} \\ C_{2} \\ $				
За	-852kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f}^{\circ}_{(products)} - \Sigma \Delta H_{f}^{\circ}_{(reactants)}$ $= (2x0) + (1x-1676) - (2x0) + (1x-824)$ $= (0 - 1676) - (0 - 824)$ $= -1676 - (-824)$ $= -852 \text{ kJ mol}^{-1}$				
3b	-38 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma S^{\circ}_{(\text{reactants})}$ $= (2 \times 27.0) + (1 \times 51.0) - (2 \times 28.0) + (1 \times 87.0)$ $= (54.0 + 51.0) - (56.0 + 87.0)$ $= 105.0 - 143.0$ $= -38 \text{ J K}^{-1} \text{ mol}^{-1}$				
3с	-841 kJ mol ⁻¹	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -852 - (298 \times \frac{-38}{1000}) = -852 - (-11.32) = -841 \text{ kJ mol}^{-1}$				
4a (i)	One from:	Brown Fumes Fizzing Solution turning yellow NO2 forming				
4 a(ii)	Oxidising agent	Oxidation Step: $Mn^{2*} + 4H_2O \rightarrow MnO_4^- + 8H^+ + 5e^-$ Potassium Periodate is an oxidising agent as it oxidises the Mn^{2+} ions				

1		Maximum absorbance of Permanganate is at 520nm						
4a (iii)	Answer from:	or Green is the complementary colour of Purple						
		From Graph: Abs no. of mol Mn ²⁺	reading on meter orbance = 0.25 :. Conce = volume x concentratio	entration of n = 0.1l	permangano x 1.4x10 ⁻⁴ m	nte = 1.4x: nol l ⁻¹ = 1.4x1	10 ⁻⁴ mol l ⁻¹ 10 ⁻⁵ mol	
4b	0.40%	m ass of Mn ²⁺	= n o of mol \times gfm	= 1.4×	10 ⁻⁵ x 54.9	= 7.68	6×10⁴g	
		%N	An = mass of Mn mass of steel ×10	$\frac{1000}{100} = 00$).19 × 1	00 = 0.40%	6	
5α	One from:			or				
	b=0	Atom = ^{Pe} Tabl	riodic No. of $\frac{1}{2}$ e Group Ione pairs $\frac{1}{2}$ 5 - 0 -	X No. of bon electron	ding = Fo ns = Cl =	ormal harge +1	• O	
5b	c=-1	(b) =	6 - 2 -	± 1/2 ×8	=	0		
•••	d=-1	(c) =	6 - 3 -	$\frac{1}{2}$ x8	=	-1		
	~ -	(d) =	6 - 3 -	$\frac{1}{2}$ x8	=	-1 0	.0.	
		5C ₂ O ₄ ²⁻	+ 16H⁺ + 2MnO⊿	₁ ⁻ ▶	• 2Mn ²⁺	+ 10CO2	+ 8H2O	
6a (i)	colourless to purple	oxalate ion Permanganate ∴ solution is t When oxalate	permanganate tions are used up a therefore colourles tions are used up, t	ion s they are ss to star permangar	manganese ion e titratec t with. nate ions	l into oxal remain an	ate solution. d not used up	
		:. solution turns purple.						
	0.000825mol	no of mol MnO_4^- = volume x concentration = 0.0165 litres x 0.0200 mol l^{-1} = 0.00033 mol $5C_0O_4^{2-}$ + 16H ⁺ + 2MnO_4^- \longrightarrow 2Mn ²⁺ + 10CO ₂ + 8H ₂ O						
6a (ii)	or	5mol 2mol						
	8.25×10 ⁻⁴ mol	5mol x ^{0.00033} /2 0.00033mol = 0.000825mol						
		$1 \text{mol } C_2 O_4^- = ($	2x12) + (4x16) = 24	1 + 64 = 88	Bg			
6a (iii)	3.63g	200 1 litre = 10000	cm ³ = 0.000825mc cm ³ = 0.000825mol m ass = n o of = 0.041	l x ¹⁰⁰⁰ / ₂₀ : mol x gfm 25mol x 8	= 0.04125 1 8 g mol ⁻¹	5mol = 3.63g		
		mass of Potas	sium = total mass -	• mass of	hydrogen	- mass of	oxalate	
60 (iv)	0.8g		= 4.49g - = 0.8g	- 0.0	60g	- 3.6	3g	
			Particle	K	Н	<i>C</i> ₂ <i>O</i> ₄		
	X=1		mass	0.8	0.060g	3.63g		
6b	У=3		No. of moles (divide % by gfm)	<u> </u>	<u>1</u> = 0.060	<u>- 3.63</u> 88 = 0.041		
	Z=2		Mole ratio (divide through by smallest value)	0.020 0.020 = 1	0.060 0.020 = 3	0.041 0.020 = 2.05		
			Round to Whole Number	· 1	3	2		
7a	CH ₃ COOH + CH ₃ CH ₂ OH ↓ CH ₃ COOCH ₂ CH ₂ + H ₂ O	CH3COOF	H + CH₃CH₂OF	I → C	H₃COC	CH₂C⊦	l₃ + H₂O	

7b(i)	System will not reach equilibrium	If reactants or products are allowed to escape then the system will never reach equilibrium.
7b(ii)	4.0	Ethanoic Acid Remaining at equilibrium = 0.24mol \therefore Ethanoic acid reacted = 0.70 - 0.24mol = 0.46mol CH ₃ COOH + CH ₃ CH ₂ OH \longrightarrow CH ₃ COOCH ₂ CH ₃ + H ₂ O 1mol 1mol 1mol 1mol 0.46mol
8a	Diagram Showing:	$\begin{array}{c c} & & & \\ &$
8b	0.0020 mol l ⁻¹	$pK_{a} = -log_{10}K_{a} = -log_{10}(1.4 \times 10^{-5}) = -(-4.85) = 4.85$ $pH = \frac{1}{2}pK_{a} - \frac{1}{2}log_{10} c$ $\frac{1}{2}log_{10} c = \frac{1}{2}pK_{a} - pH$ $= (\frac{1}{2} \times 4.85) - 3.77$ $= 2.425 - 3.77$ $= -1.34$ $log_{10} c = -2.68$ $c = 0.0020 \text{mol } l^{-1}$
9a	Step 2 NO ₂ + F \rightarrow NO ₂ F	Step 1 is the (slow) rate determining step as only the reactants of step 1 appear in the rate equation.
9b	2NO₂ + F₂→2NO₂F	$ \begin{array}{cccc} \bullet & NO_2 + F_2 & \longrightarrow & NO_2F + F \\ \bullet & NO_2 + F & \longrightarrow & NO_2F \\ \end{array} $ add $ \begin{array}{cccc} \bullet \bullet & \bullet & \bullet & \bullet \\ \end{array} $ add $ \begin{array}{cccc} \bullet \bullet & \bullet & \bullet & \bullet \\ \bullet \bullet & \bullet & \bullet & \bullet & \bullet \\ \end{array} $
9с	2 nd order	Rate = k [NO ₂] [F ₂] = k [NO ₂] ¹ [F ₂] ¹ Order of NO ₂ = 1 and Order of F ₂ = 1 \therefore overall order 1 + 1 = 2
9d	40 l mol ⁻¹ s ⁻¹	rate = $k \times [NO_2] [F_2]$ $k = \frac{rate}{[NO_2] [F_2]}$ $= \frac{1.2 \times 10^{-4} \text{ mol } l^{-1} \text{ s}^{-1}}{0.001 \text{ mol } l^{-1} \times 0.003 \text{ mol } l^{-1}}$ $= 40 \text{ l mol}^{-1} \text{ s}^{-1}$
10a	One answer from:	To give a higher yield To reduce side reactions To prevent charring
10b	Sodium chloride solution or brine or salt water	PPA Technique Question
10c	To dry the cyclohexene	PPA Technique Question
10d	35%	$\begin{array}{rcl} \mbox{cyclohexanol} & \rightarrow & \mbox{cyclohexene + water} \\ & & \mbox{1mol} & & \mbox{1mol} \\ 100g & & 82g \\ 22.56g & & 82g \ x^{22.56}/_{100} \\ & & = 18.5g \ (theoretical) \\ & \mbox{wyield} = \frac{Actual}{Theoretical} \ x100 \ = \frac{6.52g}{18.5g} \ x100 \ = 35\% \end{array}$

12a	ethanal	$H \qquad H \qquad H \qquad H^{+} \qquad H \qquad H \qquad H^{+} \qquad H \qquad H \qquad H \qquad H^{+} \qquad H \qquad H \qquad H^{+} \qquad H \qquad H \qquad H^{+} \qquad H \qquad H^{+} \qquad H \qquad H^{+} \qquad H^{+$
12b	cyanohydrin or hydroxynitrile	H H H H H H H N=C
12c	hydrolysis	н он 0 H-C-C-C 0 H H
12d(i)	Van Der Waals'	The hydrophobic region (-CH3) is non-polar so this rules out hydrogen bonding, ionic bonding or permanent dipole polar attractions.
12d(ii)	H HO'''''' ^{'''C} -O ₂ C	Optical isomers are non-superimposable mirror images of each other.
12d(iii)	3 functional groups do not match up to the site on enzyme	The mirror image has all the same groups but the order is different in three dimensions (think about your fingers on your left and right hands) The groups no longer fit the match up points in the enzyme/receptor.
13a	Alcohol and ether	Alkanols/Alcohols contain the hydroxyl -OH group Ethers have alkyl groups either side of an oxygen atom e.g. CH_3 -O-CH ₃
13b(i)	Butanone Н О Н Н Н—С—С—С—С—Н Н Н Н	PeakChemical Shift (ppm)Relative Area No of H in groupChemical Group10.9533-CH322.0533CH3-C=O32.3522CH2-C=O
13b(ii)	butan-2-ol	If Compound B is butanone, them Compound A must be a secondary alkanol and therefore must be butanone