

Grade Awarded	Mark Required		$\%$ candidates achieving grade
	$(/ 125)$	$\%$	
A	$85+$	68%	27.6%
B	$72+$	58%	26.7%
C	$60+$	48%	22.3%
D	$54+$	43%	7.5%
No award	<54	$<43 \%$	15.9%

Section:	Multiple Choice	Extended Answer		Investigation	
Average Mark:	27.2	140	30.5	160	15.3

22	C	79	Q $A G^{\circ}$ must be negative for a reaction to be feasible $\boxtimes B \Delta G^{\circ}$ must be negative for a reaction to be feasible $C C G^{\circ}$ must be negative and E° must be positive for a reaction to be feasible DD E ${ }^{\circ}$ must be positive for a reaction to be feasible
23	C	83	
24	A	33	（1） $\mathrm{Fe}^{3+}+\mathrm{e}^{-}$ \rightarrow Fe^{2+} $\mathrm{E}^{0}=+0.77 \mathrm{~V}$ （2） $\mathrm{I}_{2}+2 e^{-}$ \rightarrow $2 \mathrm{I}^{-}$ $\mathrm{E}^{0}=+0.54 \mathrm{~V}$ O $\times 2$ $2 \mathrm{Fe}^{3+}+2 e^{-}$ \rightarrow $2 \mathrm{Fe}^{2+}$ $\mathrm{E}^{0}=+0.77 \mathrm{~V}$ 0 $\times-1$ $2 \mathrm{I}^{-}$ \rightarrow $\mathrm{I}_{2}+2 \mathrm{e}^{-}$ $\mathrm{E}^{0}=-0.54 \mathrm{~V}$ Add $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-}$ \rightarrow $2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ $\mathrm{E}^{0}=+0.23 \mathrm{~V}$
25	C	77	区A Elimination reactions have a molecule removed leaving behind a $C=C$ double bond ©B Addition reactions involve adding across a $C=C$ double bond VC $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$is a nucleophile and substitutes into the position of the chlorine atom区 Electrophilic substitution reactions usually take place on aromatic rings
26	D	75	$\boxtimes A$ The propagation step is part of a chain reaction： $\mathrm{CH}_{3}{ }^{\circ}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}$ $\triangle \mathrm{B}$ The initiation step is homolytic fission： $\mathrm{Cl}_{2} \longrightarrow \mathrm{Cl}^{+}+\mathrm{Cl}^{-}$ $\boxtimes C$ Free Radical Formation is found in the initiation step： $\mathrm{Cl}_{2} \longrightarrow \mathrm{Cl} \cdot+\mathrm{Cl} \cdot$ VD There are no $C=C$ double bonds for an addition reaction
27	C	75	区A Ketones have low solubility due to lack of a－OH bond区B Aldehydes have low solubility due to lack of a -OH bond $\boxtimes c$ Shorter carboxylic acids have higher solubility than longer ones $\boxtimes D$ Longer carboxylic acids have lower solubility than shorter ones
28	B	87	$\boxtimes A$ hybridisation is when s and p orbitals become equal in energy $\boxtimes B$ pi bond has side on overlap of parallel orbitals lying perpendicular to sigma bond区 C sigma bond is the end on overlap of orbitals along the axis of the bond \boxplus D A double bond is a combination of a sigma bond and a pi bond
29	A	5	
30	B	49	XA Alkane with 15 carbons $=\mathrm{C}_{15} \mathrm{H}_{32}$ but 1 cyclo－ring makes formula $\mathrm{C}_{15} \mathrm{H}_{30}$ ∇B Alkane with 15 carbons $=C_{15} H_{32}$ but 2 cyclo－rings makes formula $C_{15} H_{28}$区C 4 hydrogen atoms added to molecule across $2 \times C=C$ double bonds 区D 4 hydrogen atoms added to molecule across $2 \times C=C$ double bonds

31	D	55	खA Br_{2} is not attracted to sites of positive charge ख $\mathrm{BCH} \mathrm{H}_{3} \mathrm{I}$ is more likely to react with a nucleophile in a substitution reaction $\boxtimes C \mathrm{NH}_{4}{ }^{+}$is more likely to be an electrophiles as it has a positive charge $\checkmark \mathrm{D} \mathrm{NH}_{3}$ has lone pair of electrons and is attracted to centres of positive charge
32	B	83	खA $\mathrm{CH}_{3} \mathrm{I}$ has no $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ or $\mathrm{H}-\mathrm{F}$ bonds $\boxtimes \mathrm{B}$ Methanol $\mathrm{CH}_{3} \mathrm{OH}$ has an $\mathrm{O}-\mathrm{H}$ bond and has hydrogen bonding between molecules $\pm C \mathrm{CH}_{3} \mathrm{OCH}_{3}$ has no $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ or $\mathrm{H}-\mathrm{F}$ bonds 区D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ has no $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ or $\mathrm{H}-\mathrm{F}$ bonds
33	A	58	$\checkmark \mathrm{A}$ no -OH group or -COOH group to react with sodium metal QB bromine solution will react with $C=C$ double bond 区C Lithium Aluminium Hydride will reduce the -CHO aldehyde group खD Acidified Dichromate Solution will oxidise the -CHO aldehyde group
34	B	48	$\begin{array}{lll}\text { Step 1：} & \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(1)} & \left.\longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}_{(\mathrm{aq})}^{-(}\right) \\ \text {Step 2：} & \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{qq})+\mathrm{CH}_{3} \mathrm{COOH}_{(l)} & \longrightarrow \mathrm{CH}_{3} \mathrm{COOO}_{4}^{-} \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\end{array}$
35	D	70	Q Molecule adding to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ must have 4 carbons to make eramine with 6 carbons凹B Molecule adding to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ must have 4 carbons to make eramine with 6 carbons $\boxtimes C C=C$ is between C_{2} and $C_{3} \therefore C=O$ must be in middle of 4 carbons not on end． $\nabla \mathrm{D} C=C$ is between C_{2} and $C_{3} \therefore C=O$ must be in middle of 4 carbons not on end．
36	A	6	$\checkmark \mathrm{A} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HNO}_{3}$ reacts with benzene to substitute on a nitro $-\mathrm{NO}_{2}$ group 凹B $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HNO}_{3}$ reacts with benzene to substitute on a nitro $-\mathrm{NO}_{2}$ not $\mathrm{SO}_{2} \mathrm{H}$ group 区C Benzene usually reacts by electrophilic substitution 囚D Benzene usually reacts by electrophilic substitution
37	C	6	खA Benzene is a flat planar molecule 囚B Benzene has the formula $\mathrm{C}_{6} \mathrm{H}_{6}$ which simplifies to CH $\boxtimes C$ Benzene lacks $C=C$ double bonds and will not decolourise bromine solution खD The bond lengths between carbons in benzene is equal
38	B	75	खA $C_{3} \mathrm{H}_{6}$ has two isomeric forms：cyclopropane and propene $\boxtimes \mathrm{B} C_{3} \mathrm{H}_{8}$ is propane and only has one structure． ख $C C_{3} \mathrm{H}_{7} \mathrm{Br}$ has two isomeric forms：1－bromopropane and 2－bromopropane खD $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ has two isomeric forms：1，1－dichloroethane and 1，2－dichloroethane
39	A	42	\boxtimes A The positively charged ions are deflected in a magnetic field to separate them囚B The vacuum pump is designed to allow the flow are particles to be separated $\boxtimes C$ The ionisation chamber is to put a positive charge onto the particle to allow separation खD Electron Bombardment is the mechanism of charging the particles
40	C	88	IR adsorption at $2725 \mathrm{~cm}^{-1}$ corresponds to $\mathrm{C}=\mathrm{O}$ bond within an aldehyde -CHO group 凹A Propanone does not have an aldehyde－ CHO group ख $\mathrm{B} \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$ does not have an aldehyde -CHO group $\boxtimes C$ Propanal does have an aldehyde -CHO group खD $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3}$ does not have an aldehyde -CHO group

2010 Adv Higher Chemistry Marking Scheme		
Long Qu	Answer	Reasoning
$1 a$	$748 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$\begin{aligned} E=\frac{L \times h \times c}{\lambda} & =\frac{6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{160 \times 10^{-9} \mathrm{~m}} \\ & =748361 \mathrm{~J} \mathrm{~mol}^{-1} \\ & =748 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$
$1 \mathrm{~b}(\mathrm{i}$	5	No. of electron pairs $=\frac{\text { no. of outer electrons in central atom }+ \text { no. of bonds }- \text { charge }}{2}$ $=\frac{8+2-(0)}{2}=\frac{10}{2}=5$ electron pairs (2 bonding +3 lone pair)
$1 b$ (ii)	Trigonal bipyramidal	
$2 a$	+3	Charge on Cr =charge on complex\quadcharge on $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$$\quad$charge on $(\mathrm{Cl})_{2}$
$2 b$	Answer: Tetraaquadichlorochromium(III)	Tetraaqua dichlorido chromium (III)
$2 c$	One from:	$\left(\left.\right\|_{C l} ^{\text {a }}\right.$
$3 a$	-852kJ mol ${ }^{-1}$	$\begin{array}{rlcc} \Delta H^{0} & = & \Sigma \Delta H_{f}{ }^{0}(\text { products }) & - \\ & =(2 \times 0)+(1 \times-1676) & - & (2 \times 0)+(1 \times-824) \\ & = & (0-1676) & - \\ & = & -1676 & (0-824) \\ & = & -852 \mathrm{~kJ} \mathrm{~mol}^{0}{ }^{-1} & \end{array}$
$3 b$	-38 $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	$\begin{array}{rlcc} \Delta \mathrm{S}^{\circ} & = & \Sigma \mathrm{S}^{\circ} \text { (products) } & - \\ & = & (2 \times 27.0)+(1 \times 51.0) & - \\ & (2 \times 28.0)+(1 \times 87.0) \\ & = & (54.0+51.0) & - \\ & = & 105.0 & (56.0+87.0) \\ & = & -38 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} & \end{array}$
3 c	-841 $\mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta G^{\circ}=\Delta H^{0}-\mathrm{T} \Delta \mathrm{S}^{\circ}=-852-\left(298 \times \frac{-38}{1000}\right)=-852-(-11.32)=-841 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4 a(i)$	One from:	
$4 a(i i)$	Oxidising agent	Oxidation Step: $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-}$ Potassium Periodate is an oxidising agent as it oxidises the Mn^{2+} ions

7 b (i)	System will not reach equilibrium	If reactants or products are allowed to escape then the system will never reach equilibrium.
7 b (ii)	4.0	
$8 a$	Diagram Showing:	
$8 b$	$0.0020 \mathrm{~mol} \mathrm{l}^{-1}$	
9a	Step 2 $\mathrm{NO}_{2}+\mathrm{F} \rightarrow \mathrm{NO}_{2} \mathrm{~F}$	Step 1 is the (slow) rate determining step as only the reactants of step 1 appear in the rate equation.
$9 b$	$2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$	(1) $\mathrm{NO}_{2}+\mathrm{F}_{2}$ \rightarrow $\mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$ (2) $\mathrm{NO}_{2}+\mathrm{F}$ \rightarrow $\mathrm{NO}_{2} \mathrm{~F}$ add (1)+(2) $2 \mathrm{NO}_{2}+\mathrm{F}_{2}$ \rightarrow $2 \mathrm{NO}_{2} \mathrm{~F}$
9c	$2^{\text {nd }}$ order	Rate $=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{1}\left[\mathrm{~F}_{2}\right]^{1}$ Order of $\mathrm{NO}_{2}=1$ and Order of $\mathrm{F}_{2}=1 \therefore$ overall order $1+1=2$
9d	$40 \mathrm{lmol}^{-1} \mathrm{~s}^{-1}$	$\begin{aligned} \text { rate } & =\mathrm{k} \times\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right] \\ \mathrm{k} & =\frac{\mathrm{rate}}{\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]} \\ & =\frac{1.2 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}{0.001 \mathrm{~mol} \mathrm{t}^{-1} \times 0.003 \mathrm{~mol} \mathrm{t}^{-1}} \\ & =40 \mathrm{l} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \end{aligned}$
$10 a$	One answer from:	To give a higher yield To reduce side reactions To prevent charring
10b	Sodium chloride solution or brine or salt water	PPA Technique Question
10 c	To dry the cyclohexene	PPA Technique Question
10d	35\%	

